In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of “quality” from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model’s output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.
When the AI only trained on 4chan dropping.
It needs to be fake and gay
That exists, its called GPT4chan, and it went exactly like you’d expect.
Did it at least come up with a cool story about managing a bottomless pit?
https://en.wikipedia.org/wiki/GPT4-Chan
I remember this lol
Tldr neural network models are incredibly weird. My best guess is that the combination of common recurring structure with variations based on common rules (joke threads and all) helps the model derive some intuition about how to handle variations of things.
Also reminds me of an even earlier neutral network which got better at playing specific games after being trained on large amounts of text completely unrelated to the game, like encyclopedias or whatever.
There’s a “your mom” joke here but I’m not going to make it because you don’t deserve that.
I am not sure if you and @General_Effort got the reference I was making, so I just wanna share it for everyone else who might not have seen it yet because it’s great:
I can’t believe I forgot about this greentext. I knew it but didn’t catch it… I apologize
Fake and Bi